Namun, kenyataan yang sebenarnya lebih umum dijumpai adalah bahwa pada suatu lokus tertentu dimungkinkan munculnya lebih dari hanya dua macam alel, sehingga lokus tersebut dikatakan memiliki sederetan alel. Fenomena semacam ini disebut sebagai alel ganda (multiple alleles).
Meskipun demikian, pada individu diploid, yaitu individu yang tiap kromosomnya terdiri atas sepasang kromosom homolog, betapa pun banyaknya alel yang ada pada suatu lokus, yang muncul hanyalah sepasang (dua buah). Katakanlah pada lokus X terdapat alel X1, X2, X3, X4, X5. Maka, genotipe individu diploid yang mungkin akan muncul antara lain X1X1, X1X2, X1X3, X2X2 dan seterusnya. Secara matematika hubungan antara banyaknya anggota alel ganda dan banyaknya macam genotipe individu diploid dapat diformulasikan sebagai berikut.
Beberapa Contoh Alel Ganda
Alel ganda pada lalat Drosophila
Lokus w pada Drosophila melanogaster mempunyai sederetan alel dengan perbedaan tingkat aktivitas dalam produksi pigmen mata yang dapat diukur menggunakan spektrofotometer. Tabel 2.3 memperlihatkan konsentrasi relatif pigmen mata yang dihasilkan oleh berbagai macam genotipe homozigot pada lokus w.
Alel ganda pada tanaman
Contoh umum alel ganda pada tanaman ialah alel s, yang berperan dalam mempengaruhi sterilitas. Ada dua macam sterilitas yang dapat disebabkan oleh alel s, yaitu sterilitas sendiri (self sterility) dan sterilitas silang (cross sterility). Mekanisme terjadinya sterilitas oleh alel s pada garis besarnya berupa kegagalan pembentukan saluran serbuk sari (pollen tube) akibat adanya semacam reaksi antigen - antibodi antara saluran tersebut dan dinding pistil.
Alel ganda pada kelinci
Pada kelinci terdapat alel ganda yang mengatur warna bulu. Alel ganda ini mempunyai empat anggota, yaitu c+, cch, ch, dan c, masing-masing untuk tipe liar, cincila, himalayan, dan albino. Tipe liar, atau sering disebut juga agouti, ditandai oleh pigmentasi penuh; cincila ditandai oleh warna bulu kelabu keperak-perakan; himalayan berwarna putih dengan ujung hitam, terutama pada anggota badan. Urutan dominansi keempat alel tersebut adalah c+ > cch > ch > c dengan sifat dominansi penuh. Sebagai contoh, genotipe heterozigot cchc, akan mempunyai bulu tipe cincila.
Golongan darah sistem ABO pada manusia
Pada tahun 1900 K. Landsteiner menemukan lokus ABO pada manusia yang terdiri atas tiga buah alel, yaitu IA, IB, dan I0. Dalam keadaan heterozigot IA dan IB bersifat kodominan, sedang I0 merupakan alel resesif (lihat juga bagian kodominansi pada bab ini). Genotipe dan fenotipe individu pada sistem ABO dapat dilihat pada tabel 2.4.
Lokus ABO mengatur tipe glikolipid pada permukaan eritrosit dengan cara memberikan spesifikasi jenis enzim yang mengatalisis pembentukan polisakarida di dalam eritrosit tersebut. Glikolipid yang dihasilkan akan menjadi penentu karakteristika reaksi antigenik tehadap antibodi yang terdapat di dalam serum darah. Antibodi adalah zat penangkal terhadap berbagai zat asing (antigen) yang masuk ke dalam tubuh.
Dalam tubuh seseorang tidak mungkin terjadi reaksi antara antigen dan antibodi yang dimilikinya sendiri.
Namun, pada transfusi darah kemungkinan terjadinya reaksi antigen-antibodi yang mengakibatkan terjadinya aglutinasi (penggumpalan) eritrosit tersebut sangat perlu untuk diperhatikan agar dapat dihindari. Tabel 2.5 memperlihatkan kompatibilitas golongan darah sistem ABO pada transfusi darah.
Selain tipe ABO, K. Landsteiner, bersama-sama dengan P.Levine, pada tahun 1927 berhasil mengklasifikasi golongan darah manusia dengan sistem MN. Sama halnya dengan sistem ABO, pengelompokan pada sistem MN ini dilakukan berdasarkan atas reaksi antigen - antibodi seperti dapat dilhat pada tabel 2.6.
Namun, kontrol gen pada golongan darah sistem MN tidak berupa alel ganda, tetapi dalam hal ini hanya ada sepasang alel, yaitu IM dan IN , yang bersifat kodominan. Dengan demikian, terdapat tiga macam fenotipe yang dimunculkan oleh tiga macam genotipe, masing-masing golongan darah M (IMIM), golongan darah MN (IMIN), dan golongan darah N (ININ).
Sebenarnya masih banyak lagi sistem golongan darah pada manusia. Saat ini telah diketahui lebih dari 30 loki mengatur sistem golongan darah, dalam arti bahwa tiap lokus mempunyai alel yang menentukan jenis antigen yang ada pada permukaan eritrosit. Namun, di antara sekian banyak yang dikenal tersebut, sistem ABO dan MN merupakan dua dari tiga sistem golongan darah pada manusia yang paling penting. Satu sistem lainnya adalah sistem Rh (resus).
Sistem Rh pertama kali ditemukan oleh K. Landsteiner, bersama dengan A.S. Wiener, pada tahun 1940. Mereka menemukan antibodi dari kelinci yang diimunisasi dengan darah seekor kera (Macaca rhesus). Antibodi yang dihasilkan oleh kelinci tersebut ternyata tidak hanya menggumpalkan eritrosit kera donor, tetapi juga eritrosit sebagian besar orang kulit putih di New York. Individu yang memperlihatkan reaksi antigen-antibodi ini disebut Rh positif (Rh+), sedang yang tidak disebut Rh negatif (Rh-).
Pada mulanya kontrol genetik sistem Rh diduga sangat sederhana, yaitu R untuk Rh+ dan r untuk Rh-. Namun, dari temuan berbagai antibodi yang baru, berkembang hipotesis bahwa faktor Rh dikendalikan oleh alel ganda. Hal ini dikemukakan oleh Wiener. Sementara itu, R.R. Race dan R.A. Fiescher mengajukan hipotesis bahwa kontrol genetik untuk sistem Rh adalah poligen
Menurut hipotesis poligen, ada tiga loki yang mengatur sistem Rh. Oleh karena masing-masing lokus mempunyai sepasang alel, maka ada enam alel yang mengatur sistem Rh, yaitu C, c D, d, E, dan e. Kecuali d, tiap alel ini menentukan adanya antigen tertentu pada eritrosit, yang diberi nama sesuai dengan alel yang mengaturnya. Jadi, ada antigen C, c, D, E, dan e. Dari lokus C dapat diperoleh tiga macam fenotipe, yaitu CC (menghasilkan antigen C), Cc (menghasilkan antigen C dan c), serta cc (menghasilkan antigen c). Begitu juga dari lokus E akan diperoleh tiga macam fenotipe, yaitu EE, Ee, dan ee. Akan tetapi, dari lokus D hanya dimungkinkan adanya dua macam fenotipe, yaitu D- (menghasilkan antigen D) dan dd (tidak menghasilkan antigen D). Fenotipe D- dan dd inilah yang masing-masing menentukan suatu individu akan dikatakan sebagai Rh+ dan Rh-. Secara keseluruhan kombinasi alel pada ketiga loki tersebut dapat memberikan 18 macam fenotipe (sembilan Rh+ dan sembilan Rh-).
Bertemunya antibodi Rh (anti D) yang dimiliki oleh seorang wanita dengan janin yang sedang dikandungnya dapat mengakibatkan suatu gangguan darah yang serius pada janin tersebut. Hal ini dimungkinkan terjadi karena antibodi Rh (anti D) pada ibu tadi dapat bergerak melintasi plasenta dan menyerang eritrosit janin. Berbeda dengan antibodi anti A atau anti B, yang biasanya sulit untuk menembus halangan plasenta, antibodi Rh mudah melakukannya karena ukuran molekulnya yang relatif kecil.
Penyakit darah karena faktor Rh terjadi apabila seorang wanita Rh- (dd) menikah dengan pria Rh+ (DD) sehingga genotipe anaknya adalah Dd. Pada masa kehamilan sering kali terjadi percampuran darah antara ibu dan anaknya, sehingga dalam perkawinan semacam itu ibu yang Rh- akan memperoleh imunisasi dari anaknya yang Rh+. Apabila wanita tersebut mengandung janin Dd secara berturut-turut, maka ia akan menghasilkan antibodi anti D. Biasanya tidak akan terjadi efek yang merugikan terhadap anak yang pertama akibat reaksi penolakan tersebut. Akan tetapi, anak yang lahir berikutnya dapat mengalami gejala penyakit yang disebut eritroblastosis fetalis. Pada tingkatan berat penyakit ini dapat mengakibatkan kematian.
Dengan adanya peluang reaksi antigen - antibodi dalam golongan darah manusia, maka dilihat dari kompatibiltas golongan darah antara suami dan istri dapat dibedakan dua macam perkawinan, masing-masing
- Perkawinan yang kompatibel, yaitu perkawinan yang tidak memungkinkan berlangsungnya reaksi antigen-antibodi di antara ibu dan anak yang dihasilkan dari perkawinan tersebut.
- Perkawinan yang inkompatibel, perkawinan yang memungkinkan berlangsungnya reaksi antigen-antibodi di antara ibu dan anak yang dihasilkan dari perkawinan tersebut.